

Florida Solar Energy Center • November 1-4, 2005

Hydrogen Detection Using "Smart Pigments & Paints"

N. Mohajeri, G. Bokerman, N. Muradov, & A. T-Raissi Florida Solar Energy Center University of Central Florida

Start Date: September 2004

Planned Completion Date: December 2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- a) To modify existing and synthesize novel formulations for the visual detection of hydrogen leaks.
- b) To develop a process for the application of irreversible smart paints.
- c) To complete physicochemical characterization of prospective irreversible smart paint formulations.
- d) To complete weathering tests of the prospective irreversible smart paint-substrate combinations.
- e) To design and synthesize novel reversible smart paints based on tungsten & molybdenum polyoxometalate complexes.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

- Point-of-use electronic sensors
 - They require time consuming & laborious process especially when very large areas must be monitored.
 - Unsatisfactory for continuous monitoring.
 - Loss of sensitivity in the field due to, for example wind effects, etc.
 - The leak can be detected only as it is occurring.

Relevance to NASA

- Detecting H₂ leakage at storage or usage sites is crucial for safe NASA operation.
- Considerable interest in the R&D of functional materials to locate hydrogen leaks when they occur.

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

• Budget = \$87,270.00

		Qtr 1			Qtr 2			Qtr 3			Qtr 4	
Project Steps:	Sep 04	Oct 04	Nov 04	Dec 04	Jan 05	Feb 05	Mar 05	Apr 05	May 05	Jun 05	Jul 05	Aug 05
Process application of PGM												
oxides												
Synthesis of reversible												
pigments												
Physicochemical												
characterization of reversible												
Weathering												•
Trouble ing												

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

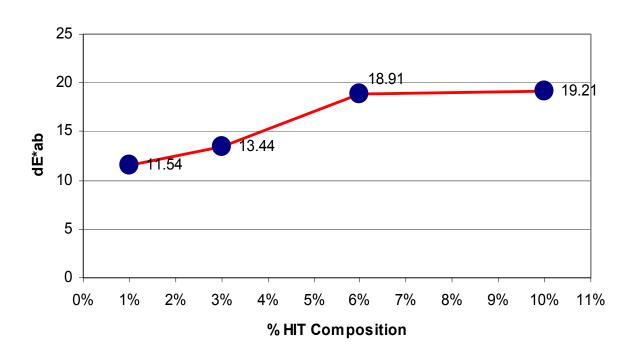
 Any industry which produces or consumes hydrogen such as NASA.

- Hydrogen Economy
 - Transportation
 - Storage
 - Fuel Cells

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

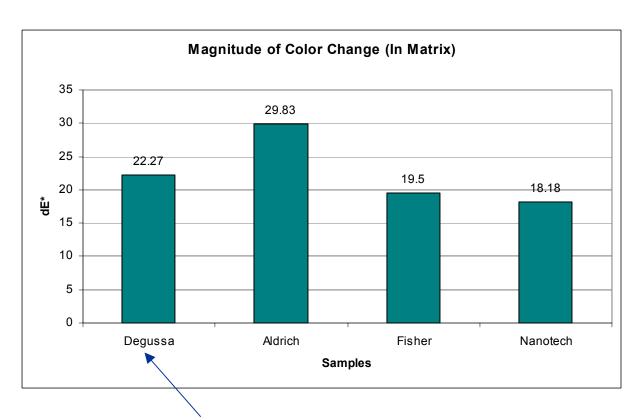
- Pd oxide based pigments for "one time-use" have been synthesized & demonstrated.
- Pigments show a color change at a range of temperatures from ambient down to -40°C.
- Effective gas permeable matrices for the pigment encapsulation have been identified. These matrices show improved selectivity toward hydrogen detection.
- Various techniques for application of the pigments have been developed & tested.
- The irreversible "one time-use" system is being field tested at NASA-KSC.
- Sample kits have been sent to other NASA Centers for evaluation & feedback.



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

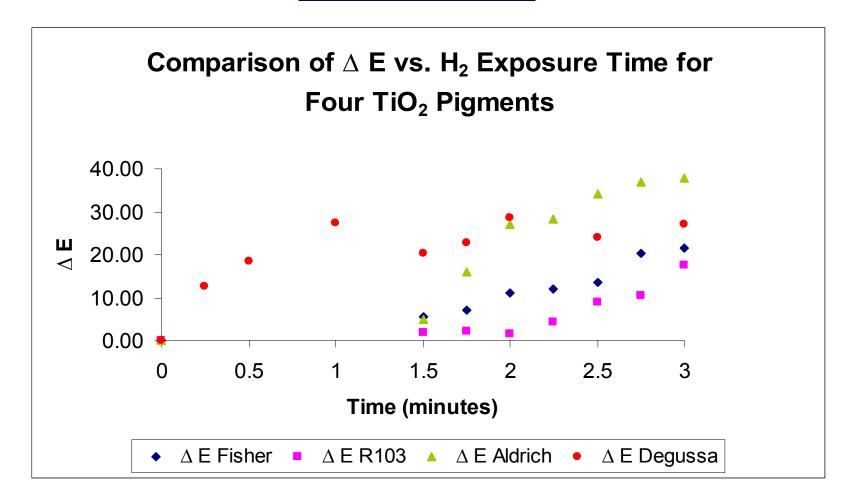
Composition Comparison



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

Fastest color change



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

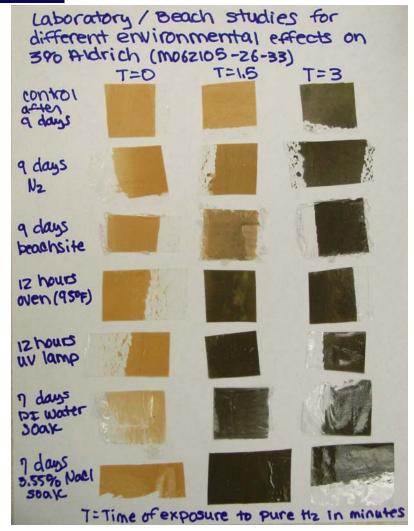
Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

1% H₂ concentration study

	1 minute exposure Pigment Side	2 minute exposure Pigment Side
TiO ₂ Source	ΔE abs	ΔE abs
Fisher		7.00
Dupont R103		2.55
Aldrich		13.63
Degussa P25	7.24	14.75

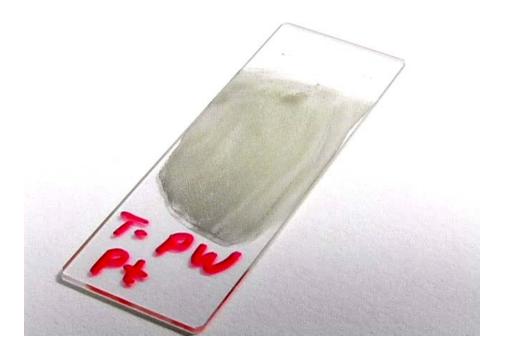
- Color changes faster with Degussa support
- After 2 minutes exposure, the extent of color change is the same for Aldrich & Degussa supported pigments



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results One time-use

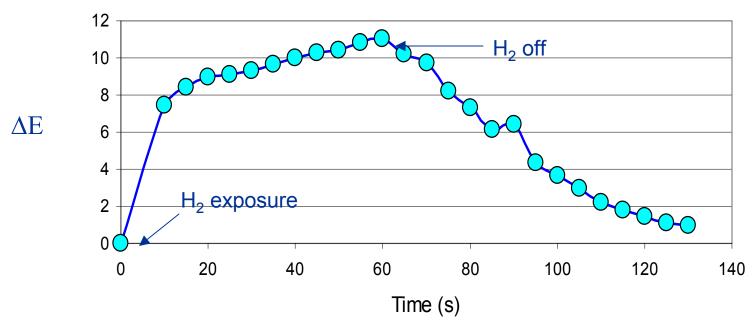
Specimens placed on the beach react to H₂ faster than unexposed films, in a laboratory environment.



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results Repeated use

 Special reversible pigments based on tungsten and molybdenum polyoxometales for "repeated use" application has been prepared & tested at FSEC laboratories.



Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results Repeated use

Kinetics of Coloration and Bleaching of Reversible H₂ Chemochromic Indicator

Florida Solar Energy Center • November 1-4, 2005

Material Costs for Manufacturing 1" Wide Chemochromic Tape

		Reager	nts & Chemicals (\$/Yd)	Matrix (\$/Yd)	Total (\$/Yd)
One Time-	Use		0.05	0.87	0.92
Repeated-	Use		0.20	0.26	0.46

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

 A provisional patent entitled "Gas Permeable Matrix for Encapsulating Chemochromic Compounds with Enhanced Hydrogen Sensing Performance," Application No. 60/676,352 has been filed with the USPTO.

Florida Solar Energy Center • November 1-4, 2005

Future Plans

Research

- Field testing & weathering evaluation of "repeated use" articles.
- Development of "repeated use" & "one time-use" articles suitable for temperature service down to –359 °F.
- Lowering the overall manufacturing costs of the chemochromic articles.

Future Funding & Commercialization

- Florida Hydrogen Initiative LOI pending.
- Will seek additional NASA funding.
- Planning full-scale commercialization via UCF's Venture Lab. & SBIR funding conduit.

Florida Solar Energy Center • November 1-4, 2005

Acknowledgment

- Dr. Robert Youngquist (NASA-KSC)
- Dr. Janine Captain (NASA-KSC)
- Mr. Trent Smith (NASA-KSC)
- Dr. Marry Whitten (UCF)
- Ms. Barbara Peterson (ASRC)
- Ms. Cristina Berger (UCF)